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We discuss in details the role of Wigner 6j symbol as the basic building block unifying such different fields
as state sum models for quantum geometry, topological quantum field theory, statistical lattice models and
quantum computing. The apparent 2-fold nature of the 6j symbol displayed in quantum field theory and
quantum computing -a quantum tetrahedron and a computational gate- is shown to merge together in a
unified quantum-computational SU(2)-state sum framework.

1. Introduction

The above illustration shows a variant woodcut printer’s
device on verso last leaf of a rare XVI century edition of Plato’s
Timaeus (DiVini Platonis Operum a Marsilio Ficino tralatorum,
Tomus Quartus. Lugduni, apud Joan Tornaesium M.D.XXXXX).
The printer’s device to the colophon shows a medaillon with a
tetrahedron in center, and the motto round the border: Nescit
Labi Virtus, Virtue cannot fail (a more pedantic rendering is:
Virtue ignores the possibility of sliding down). This woodcut
beautifully illustrates the role of the perfect shape of the
tetrahedron in classical culture. The tetrahedron conveys such
an impression of strong stability as to be considered as an
epithome of virtue, unfailingly capturing us with the depth and
elegance of its shape. However, as comfortable as it may seem,
this time-honored geometrical shape smuggles energy into some
of the more conservative aspects of mathematics, physics, and
chemistry, since it is perceptive of where the truth hides away
from us: the quantum world. As Enzo says, the geometry of
the tetrahedron actually takes us on a trip pointing to unexpected

connections between the classical and the quantum. He has
indeed often entertained us with descriptions of open terrains
of physics and chemistry which are bumpy, filled with chemical
bonds and polyhedra, and which bend abruptly in unexpected
directions. We do feel that, like any good adventure, it is not
the destination but what we unexpectedly find around the bend
that counts. Thus, the story we wish to tell here is the story of
what, together with Enzo, we found around the bend: the
unfailing virtues of the quantum tetrahedron.

Our story starts by recalling that the (re)coupling theory of
many SU(2) angular momenta, framed mathematically in the
structure of the Racah-Wigner tensor algebra, is the most
exhaustive formalism in dealing with interacting many-angular
momenta quantum systems.1,2 As such, it has been over the years
a common tool in advanced applications in atomic and molecular
physics, nuclear physics, and mathematical physics. Suffice it
here to mention in physical chemistry the basic work of Wigner,
Racah, Fano, and others (see the collection of reprints3 and the
Racah memorial volume quoted in ref 7 below) as well as the
recent book4 on topics covered in this special issue.

In the last three decades there has been also a deep interest
in applying (extensions of) such notions and techniques in the
branch of theoretical physics known as Topological Quantum
Field Theory, as well as in related discretized models for
3-dimensional quantum gravity. More recently, the same
techniques have been employed for establishing a new frame-
work for quantum computing, the so-called “spin network”
quantum simulator.

In previous work in collaboration with Enzo5 we have stressed
the combinatorial properties of Wigner 6j symbols (and of its
generalizations, the 3nj symbols, see ref 6), which stand at the
basis of so many different fields of research.

The aim of the present paper is to discuss in details the
apparent 2-fold nature of the 6j symbol displayed in quantum
field theory and quantum computing, and to convey the idea
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that these two pictures actually merge together. In section 2
the 6j is looked at as a real “tetrahedron”, the basic magic brick
in constructing 3-dimensional quantum geometries of the Regge
type, while in section 3 it plays the role of a magic box, namely
the elementary universal computational gate in a quantum circuit
model. Thus the underlying physical models embody, at least
in principle, the hardware of quantum computing machines,
while a quantum computer of this sort, looked at as a universal,
multipurpose machine, might be able to simulate “efficiently”
any other discrete quantum system. More remarks this topic
are postponed to the end of section 3, while most mathematical
definitions and results on Wigner 6j symbols needed in the
previous sections are collected in Appendix A.

2. Tetrahedra and 6j Symbols in Quantum Gravity

From a historical viewpoint the Ponzano-Regge asymptotic
formula for the 6j symbol,7 reproduced in (14) of Appendix
A.1, together with the seminal paper8 in which “Regge Calculus”
was founded, are no doubt at the basis of all “discretized”
approaches to General Relativity, both at the classical and at
the quantum level.

In Regge’s approach the edge lengths of a “triangulated”
spacetime are taken as discrete counterparts of the metric, a
tensorial quantity that encodes the dynamical degrees of freedom
of the gravitational field and appears in the classical Einstein-
Hilbert action for General Relativity through its second deriva-
tives combined in the Riemann scalar curvature. Technically
speaking, a Regge spacetime is a piecewise linear (PL)
“manifold” of dimension D dissected into simplices, namely
triangles in D ) 2, tetrahedra in D ) 3, 4-simplices in D ) 4,
and so on. Inside each simplex either a Euclidean or a
Minkowskian metric can be assigned: accordingly, PL manifolds
obtained by gluing together D-dimensional simplices acquire
an overall PL metric of Riemannian or Lorentzian signature.
[Einstein’s General Relativity corresponds to the physically
significant case of a 4-dimensional spacetime endowed with a
smooth Lorentzian metric. However, models formulated in “non-
physical” dimensions such as D ) 2, 3 turn out to be highly
nontrivial and very useful in a variety of applications, ranging
from conformal field theories and associated statistical models
in D ) 2 to the study of geometric topology of 3-manifolds.
Moreover, the most commonly used quantization procedure of
such theories has a chance of being well-defined only when
the underlying geometry is (locally) Euclidean; see further
remarks below.]

Consider a particular triangulation T D (l) f M D, where
M D is a closed, locally Euclidean manifold of fixed topology
and l denotes collectively the (finite) set of edge lengths of the
simplices in T D. The Regge action is given explicitly by
(units are chosen such that the Newton constant G is equal to
1)

where the sum is over (D-2)-dimensional simplices σi ∈ T D

(called hinges or “bones”), Vol(D-2)(σi) are their (D-2)-
dimensional volumes expressed in terms of the edge lengths
and εi represent the deficit angles at σi. The latter are defined,
for each i, as 2π - Σkθi,k, where θi,k are the dihedral angles
between pairs of (D-1)-simplices meeting at σi and labeled by
some k. Thus a positive [negative or null] value of the deficit
angle εi corresponds to a positive [negative or null] curvature

to be assigned to the bone i, detected for instance by moving a
D-vector along a closed path around the bone i and measuring
the angle of rotation. Even such a sketchy description of Regge
geometry should make it clear that a discretized spacetime is
flat (zero curvature) inside each D-simplex, while curvature is
concentrated at the bones that represent “singular” subspaces.
It can be proven that the limit of the Regge action (1) when the
edge lengths become smaller and smaller gives the usual
Einstein-Hilbert action for a spacetime which is “smooth”
everywhere, the curvature being distributed “continuously”.
Regge equations (the discretized analog of Einstein field
equations) can be derived from the classical action by varying
it with respect to the dynamical variables, i.e., the set {l} of
edge lengths of T D (l), according to Hamilton principle of
classical field theory (we refer to ref 9 for a bibliography and
brief review on Regge Calculus from its beginning up to the
1990s).

Regge Calculus gave rise in the early 1980s to a novel
approach to quantization of General Relativity known as
Simplicial Quantum Gravity (see ref 9-11 and references
therein). The quantization procedure most commonly adopted
is the Euclidean path-sum approach, namely a discretized version
of Feynman’s path-integral describing D-dimensional Regge
geometries undergoing “quantum fluctuations” (in Wheeler’s
words a “sum over histories”,12 formalized for gravity in the
so-called Hawking-Hartle prescription13). Without entering into
technical details, the discretized path-sum approach turns out
to be very useful in addressing a number of conceptual open
questions in the approach relying on the geometry of smooth
spacetimes, although the most significant improvements have
been achieved for the D ) 3 case, which we are going to address
in some detail in the rest of this section.

Coming to the interpretation of Ponzano-Regge asymptotic
formula for the 6j symbol given in (14) of Appendix A.1, we
realize that it represents the semiclassical functional, namely
the semiclassical limit of a path-sum over all quantum fluctua-
tions, to be associated with the simplest 3-dimensional “space-
time”, a Euclidean tetrahedron T. In fact, the argument in the
exponential reproduces the Regge action S3(l) for T since in
the present case (D-2)-simplices are 1-dimensional (edges) and
Vol(D-2)(σi) in (1) are looked at as the associated edge lengths;
see the introductory part of Appendix A.

More in general, we denote by T 3 (j) f M 3 a particular
triangulation of a closed 3-dimensional Regge manifold M 3

(of fixed topology) obtained by assigning SU(2) spin variables
{j} to the edges of T 3. The assignment must satisfy a number
of conditions, better illustrated if we introduce the state
functional associated with T 3 (j), namely

where N0, N1, and N3 are the number of vertices, edges, and
tetrahedra in T 3 (j), Λ(L) ) 4L3/3C (L is a fixed length and C
an arbitrary constant), wA z (2jA + 1) are the dimensions of
irreducible representations of SU(2), which weigh the edges,
φB ) (-1)Σp)1

6 jp and {:::}B are 6j symbols to be associated with
the tetrahedra of the triangulation. Finally, the Ponzano-Regge
state sum is obtained by summing over triangulations corre-
sponding to all assignments of spin variables {j} bounded by
the cutoff L

S(TD(l)) ≡ SD(l) ) ∑
σi

Vol(D-2)(σi)εi (1)

Z[T 3(j) f M 3;L] )

Λ(L)-N0 ∏
A)1

N1

(-1)2jAwA ∏
B)1

N3

φB{j1 j2 j3

j4 j5 j6
}

B
(2)
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where the cutoff is formally removed by taking the limit in front
of the sum.

It is not easy to review in short the huge number of
implications and further improvements of Ponzano-Regge state
sum functional (3), as well as its deep and somehow surprising
relationships with so many different issues in modern theoretical
physics and in pure mathematics. We are going to present in
the rest of this section a limited number of items, whose
selection is made mainly on the basis of their relevance for
(quantum) computational problems raised in the next section
(we recall, however, the importance of this model in the so-
called “loop” approach to quantum gravity,14 see also ref 11).

(a) As already noted in ref 7, the state sum ZPR[M 3] is a
topological invariant of the manifold M 3, owing to the
fact that its value is actually independent of the particular
triangulation; namely it does not change under suitable
combinatorial transformations. Remarkably, these “moves”
are expressed algebraically in terms of the relations given
in Appendix A.2, namely the Biedenharn-Elliott identity
(17) (representing the moves (2 tetrahedra) T (3 tetra-
hedra)) and of both the Biedenharn-Elliott identity and
the orthogonality conditions (18) for 6j symbols, which
represent the barycentric move together its inverse,
namely (1 tetrahedra) T (4 tetrahedra).

(b) In ref 15, a “regularized” version of (3), based on
representation theory of a quantum deformation of the
group SU(2), was proposed and shown to be a well-
defined quantum inVariant for closed 3-manifolds. [The
adjective “quantum” refers here to “deformations” of
semisimple Lie groups introduced by the Russian School
of theoretical physics in the 1980s in connection with
inverse scattering theory. From the mathematical view-
point the Turaev-Viro invariant, unlike the Ponzano-
Regge state sum functional, is always finite and has been
evaluated explicitly for some classes of 3-manifolds.]
Its expression reads

where the summation is over all {j} labeling highest
weight irreducible representations of SU(2)q (q ) exp{2πi/
r}, with {j ) 0, 1/2, 1, ..., r - 1}), wA z (-1)2jA[2jA +
1]q where [ ]q denote a quantum integer, w ) 2r/(q -
q-1)2 and |:::|B represents here the q-6j symbol whose
entries are the angular momenta ji, i ) 1, ..., 6 associated
with tetrahedron B. If the deformation parameter q is set
to 1, one gets ZTV[M 3; 1] ) ZPR[M 3].
It is worth noting that the q-Racah polynomial (associated
with the q-6j by a procedure that matches with what can
be done in the SU(2) case, see (16) in Appendix A.2)
stands at the top of Askey’s q-hierarchy collecting
orthogonal q-polynomials of one discrete or continuous
variable. On the other hand, the discovery of the
Turaev-Viro invariant has provided major developments
in the branch of mathematics known as geometric
topology.16

(c) The Turaev-Viro or Ponzano-Regge state sums as
defined above can be generalized in many directions. For

instance, they can be extended to simplicial 3-manifold
endowed with a 2-dimensional boundary17 and to D-
manifolds18 (giving rise to topological invariants related
to suitable (discretized) topological quantum field theory
of the Schwarz type19).

(d) The fact that the Turaev-Viro state sum is a topological
invariant of the underlying (closed) 3-manifold reflects
a crucial physical property of gravity in dimension 3,
which makes it different from the corresponding D ) 4
case. Loosely speaking, the gravitational field does not
possess local degrees of freedom in D ) 3, and thus any
“quantized” functional can depend only on global features
of the manifold encoded into its overall topology.
Actually, the invariant (4) can be shown to be equal to
the square of the modulus of the Witten-Reshetikhin-
Turaev invariant, which in turn represents a quantum
path-integral of an SU(2) Chern-Simons topological field
theory, whose classical action can be shown to be
equivalent to Einstein-Hilbert action,20 written for a
closed oriented manifold M 3.21,22 Then there exists a
correspondence

where the “level” k of the Chern-Simons functional is
related to the deformation parameter q of the quantum
group.

Despite the “topological” nature of Turaev-Viro (Ponzano-
Regge) state sum and Witten-Reshetikhin-Turaev functionals
in case of closed 3-manifolds, whenever a 2D-dimensional
boundary occurs in M 3, giving rise to a pair (M 3, Σ), where Σ
is an oriented surface (or possibly the disjoint union of a finite
number of surfaces), things change radically. For instance, if
we add a boundary to the manifold in Witten-Reshetikhin-
Turaev quantum functional, the theory induced on Σ is a
Wess-Zumino-Witten (WZW)-type Conformal Field Theory
(CFT),20 endowed with nontrivial quantum degrees of
freedom. In particular, the frameworks outlined above can
be exploited to establish a direct correspondence between
2D Regge triangulations and punctured Riemann surfaces,
thus providing a novel characterization of the WZW model
on triangulated surfaces on any genus23 at a fixed level k.

We cannot enter here into many technical details on these
developments. It should be sufficient to remark that, when
addressing “boundary” CFT, the geometric role of the
quantum tetrahedron shades out, while its algebraic content
is enhanced given that the (q)-6j-symbol plays the role of a
“duality” (or “fusion”) matrix, similar to a “recoupling
coefficient” between different basis sets, as (11) in Appendix
A suggests.

(e) In ref 24 a (2 + 1)-dimensional decomposition of
Euclidean gravity (which takes into account the cor-
respondence (5)) is shown to be equivalent, under mild
topological assumptions, to a Gaussian 2D fermionic
system, whose partition function takes into account the
underlying 3D topology. More precisely, the partition
function for free fermions propagating along “knotted
loops” inside a 3-dimensional sphere corresponds to a
3D Ising model on so-called knot-graph lattices. On
the other hand, the formal expression of 3D Ising
partition function for a dimer covering of the underly-
ing graph lattice can be shown to coincide with the
permanent of the generalized incidence matrix of the

ZPR[M 3] ) lim
Lf∞

∑
{j}eL

Z[T 3(j) f M 3;L] (3)

ZTV[M 3;q] ) ∑
{j}

w-N0 ∏
A)1

N1

wA ∏
B)1

N3 |j1 j2 j3

j4 j5 j6
|
B

(4)

ZTV[M 3;q] T |ZWRT[M 3;k]|2 (5)
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lattice.25,26 Recall first that the permanent of an n × n
matrix A is given by

where ai,σ(i) are minors of the matrix, σ(i) is a
permutation of the index i ) 1, 2, ..., n and Sn is the
symmetric group on n elements. A graph lattice
associated with a fixed orientable surfaces Σ of genus
g embedded in S3 may be constructed by resorting to
the so-called “surgery link” presentation. Then the
incidence matrix of such piecewise linear graph with,
e.g., n vertices, is defined as an n × n matrix A )
(aij) with entries in (1, 0) according to whether vertices
i, j are connected by an edge or not. Finally, the Ising
partition function turns out to be a weighted sum, over
all possible configurations of knot-graph lattices, of
suitable “determinants” of generalized forms of the
incidence matrices that take into account the topology
of the underlying manifold. We skip, however, other
technical details and refer to ref 27 for a short account
of these results (which will be briefly reconsidered in
the following section in the context of quantum
computational questions).

The deep relationship between 3D quantum field theories that
share a “topological” nature and (solvable) lattice models in
2D, sketched in the last item by resorting to a specific example,
was indeed predicted in the pioneering paper by E. Witten.28

Not so surprisingly, the basic quantum functional that realizes
this connection was identified there with the expectation Value
of a certain tetrahedral configuration of braided Wilson lines,
where “Wilson lines” are quantum observables associated with
“particle trajectories” that in general look like sheafs of braided
strands propagating from a surface Σ1 to another Σ2, both
embedded in a 3D background.

3. 6j Symbol and Quantum Algorithms

The model for universal quantum computation proposed in
ref 29, the “spin network” simulator, is based on the (re)coupling
theory of SU(2) angular momenta as formulated in the basic
texts1,2 on the quantum theory of angular momentum and the
Racah-Wigner algebra, respectively. At first glance the spin
network simulator can be thought of as a non-Boolean gener-
alization of the Boolean quantum circuit model,30 with finite-
dimensional, binary coupled computational Hilbert spaces
associated with N mutually commuting angular momentum
operators, and unitary gates expressed in terms of:

(i) recoupling coefficients (3nj symbols) between inequiva-
lent binary coupling schemes of N ) (n + 1) SU(2)-
angular momentum variables (j-gates);

(ii) Wigner rotations in the eigenspace of the total angular
momentum J (M-gates) (that, however, will not be taken
into account in what follows, see section 3.2 of ref 29
for details)
[Recall that this scheme is the quantum version of the
classical Boolean circuit in which strings of the basic
binary alphabet (0,1) are replaced by collections of
“qubits”, namely quantum states in (C2)XN, and the gates
are unitary transformations that can be expressed, simi-
larly to what happens in the classical case, as suitable
sequences of “elementary” gates associated with the
Boolean logic operations and, or, not.]

In the diagram we try to summarize various aspects of the
spin network simulator together with its relationships with other
models for Q-computation, in the light of underlying physical
frameworks discussed in the previous section.

On the left-hand portion of the diagram the standard Boolean
quantum circuit is connected with a double arrow to the so-
called topological approach to quantum computing developed
in ref 31 (based, by the way, on the Witten-Reshetikhin-Turaev
approach quoted in item (d) of the previous section). This means
in practice that these two models of computation can be
efficiently “converted” one into the other. The Boolean case is
connected one-way to the box of the generalized Q-circuit
because it is actually a particular case of the latter when all N
angular momenta are 1/2-spins.

On the right-hand column, the double arrows stemming from
the box of the spin network Q-simulator relate it to its reference
models: from the viewpoint of quantum information theory it
is a generalized Q-circuit, as already noted before, while its
physical setting can be assimilated to state sum-type models
discussed in the first part of the previous section.

The upper arrow is to be meant as generating, from the
general Q-computational scheme, families of “finite-states”
Q-automata able to process in an efficient way a number of
specific algorithmic problems that on a classical computer would
require an exponential amount of resources (cf. the end of this
section).

Besides the features described above, the kinematical structure
of the Q-spin network complies with all the requisites of an
universal Q-simulator as defined by Feynman in ref 32, namely

• locality, reflected in the binary bracketing structure of the
computational Hilbert spaces, which bears on the existence
of poly local, two-body interactions;

• discreteness of the computational space, reflected in the
combinatorial structure of the (re)coupling theory of SU(2)
angular momenta2,33,34

• discreteness of time, given by the possibility of selecting
controlled, step-by-step applications of sequences of unitary
operations for the generation of (any) process of computation;

• uniVersality, guaranteed by the property that any unitary
transformation operating on binary coupled Hilbert spaces
(given by SU(2) 3nj symbols) can be reconstructed by
taking a finite sequence of Racah-Wigner transforms
implemented by expression of the type given in (11) of

per[A] ) ∑
σ∈Sn

∏
i)1

n

ai,σ(i) (6)
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Appendix A (possibly apart from phases factors), as shown
in ref 2 topic 12.

Then the Wigner 6j symbol plays a prominent role also in
the spin network Q-simulator scheme, where it is the “elemen-
tary” unitary operation, from which any “algorithmic” procedure
can be built up. The meaning of the identities (17) and (18)
satisfied by the 6j’s in the present context is analyzed at length
in ref 29 (section 4.2 and Appendix A) and can be related to
the notion of intrinsic “parallelism” of quantum computers.

A caveat is, however, in order: the complexity class of any
classical [quantum] algorithm is defined with respect to a
“standard” classical [quantum] model of computation. [Recall
that a quantum algorithm for solving a given computational
problem is “efficient” if it belongs to the complexity class BQP,
namely the class of problems that can be solved in polynomial
time by a Boolean Q-circuit with a fixed bounded error in terms
of the “size” of a typical input. In most examples the size of
the input is measured by the length of the string of qubits
necessary to encode the generic sample of the algorithmic
problem, as happens with the binary representation of an integer
number in calculations aimed to factorize it in prime factors.]
At the quantum level, such a reference model is the Boolean
Q-circuit,30 and thus what is necessary to verify is that a 6j
symbol with generic entries can be efficiently (polynomially)
processed by a suitably designed Q-circuit. Note first that a 6j
symbol with fixed entries, due to the finiteness of the Racah
sum rule (see (16) in Appendix A.2), can be efficiently computed
classically. On the other hand, the 6j is a (2d + 1) × (2d + 1)
unitary matrix representing a change of basis, as given explicitly
in (11) of Appendix A, with j12, j23 representing matrix indices
running over an interval of length 2d + 1 in integer steps. Thus
the evaluation of the complexity class of this problem consists
of asking whether, as d increases, the calculation of the 6j falls
into the BQP class. The circuit which implements such a task
has been designed in ref 35 for the case of the SU(2)q 6j for
each q ) root of unity, while the analog problem involving the
“classical”, SU(2) 6j is still open.

In the past few years two of the authors, in collaboration with
S. Garnerone, have developed, on the basis of the spin network
simulator setting,29 a new approach to deal with classes of
algorithmic problems that classically admit only exponential
time algorithms. The problems in question arise in the physical
context of 3D topological quantum field theories discussed in
the previous section in light of the fundamental result relating
a topological invariant of knots, the Jones polynomial,36 with a
quantum observable given by the vacuum expectation value of
a Wilson “loop” operator37 associated with closed knotted curves
in the Witten-Reshetikhin-Turaev background model.

Without entering into technical details, efficient (polynomial
time) quantum algorithms for approximating (with an error that
can be made as small as desired) generalizations of Jones
polynomial have been found in refs 35 and 38 while the case
of topological invariants of 3-manifolds has been addressed in
ref 39. The relevance in having solved this kind of problems
stems from the fact that an approximation of the Jones
polynomial is sufficient to simulate any polynomial quantum
computation.40

Summing up, the construction of such quantum algorithms
actually bears on the interplay of three different contexts

(1) a topological context, where the problem is well-posed
and makes it possible to recast the initial instance from
the topological language of knot theory to the algebraic
language of braid group theory, as reviewed in ref 41;

(2) a field theoretic context, where tools from 3D topological
quantum field and associated 2D conformal field theory
are used to provide a unitary representation of the braid
group; and

(3) a quantum information context, where the basic
features of quantum computation are used to efficiently
solve the original problem formulated in a field
theoretic language.

In light of remark (e) at the end of section 2, further analysis
of relationships between specific 3D topological quantum field
theories and (solvable) lattice models in 2D in the quantum-
computational context would represent a major improvement
not only from a theoretical viewpoint but also in view of possible
physical implementations. In ref 27 some preliminary progress
has been achieved for establishing a quantum algorithm for the
evaluation of the permanent (6) associated with the partition
function of the Ising model on knot-graph lattices. As shown
in ref 42 by resorting to numerical simulations, such a
computational problem can be related to the computation of
Jones invariants on suitably defined configurations, thus provid-
ing further evidence of the “universality” of any one of the
quantum algorithms quoted above.

In conclusion, we hope to have been able to illustrate in
sufficient details the role of the Wigner 6j symbol (or the q-6j)
as an universal building block unifying such different fields as
quantum geometry, topological quantum field theory, statistical
lattice models and quantum computing.

The interplay between solvability and computability within
the framework of quantum Witten-Reshetikhin-Turaev
theory and solvable lattice models deserves, however, a few
more comments. Unlike perturbatively renormalizable quan-
tum field theory, which represent the basic tool in the standard
model in particle physics, where the physically measurable
quantities are obtained as finite limits of infinite series in
the physical coupling constant, quantum WRT theory is
actually “solvable” since functionals of type (5) and (4), as
well as Wilson loop observables, are sums of a finite number
of terms for each fixed value of the deformation parameter
q. Actually such finiteness reflects the existence of a deeper
algebraic symmetry stemming from braid group representa-
tions and associated Yang-Baxter equation; see, e.g., refs
37 and 41 and references therein. [This notion of solvability
might be viewed as the quantum analog of the property of
“complete integrability” in classical mechanics. Recall that
integrable systems admit a sufficient number of conserved
quantities that make it possible to solve explicitly Newton
equations of motion. These “constants of motions” are
endowed with a suitable algebraic structure under Poisson
bracketing which is related in turn to complete integrability
owing to Arnold-Liouville theorem.] The issue of comput-
ability of all the relevant quantities of quantum WRT theory,
and in particular of the Jones polynomial, is ultimately related
to solvability/finiteness of the underlying theory. Thus the
existence of “efficient” computational protocols should help
in sheding light on the open question concerning the
validation of the heuristic procedure associated with the path-
sum quantization scheme (may be also in other contexts).
Turning the argument upside down, the search for new
efficient quantum algorithms for processing “invariant quanti-
ties” characterizing suitably decorated lattice, graphs, sur-
faces, etc. represents an original and possibly very fruitful
approach for understanding the underlying physical models
with respect to their (yet unknown) integrability properties.
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Appendix A: Wigner 6j Symbol and Its Symmetries

Given three angular momentum operators J1, J2, J3sassociated
with three kinematically independent quantum systemssthe
Wigner-coupled Hilbert space of the composite system is an
eigenstate of the total angular momentum

and of its projection Jz along the quantization axis. The
degeneracy can be completely removed by considering binary
coupling schemes such as (J1 + J2) + J3 and J1 +(J2 + J3),
and by introducing intermediate angular momentum operators
defined by

and

respectively. In Dirac notation the simultaneous eigenspaces of
the two complete sets of commuting operators are spanned by
basis vectors

where j1, j2, j3 denote eigenvalues of the corresponding operators,
j is the eigenvalue of J, and m is the total magnetic quantum
number with range -j e m e j in integer steps. Note that j1, j2,
j3 run over {0, 1/2, 1, 3/2, 2, ...} (labels of SU(2) irreducible
representations), while |j1 - j2| e j12 e j1 + j2 and |j2 - j3| e
j23 e j2 + j3 (all quantum numbers are in p units).

The Wigner 6j symbol expresses the transformation between
the two schemes (8) and (9), namely

apart from a phase factor. [Actually this expression should
contain the Racah W-coefficient W(j1j2j3j; j12j23) which differs
from the 6j by the factor (-)j1+j2+j3+j. Recall that (2j12 + 1) and
(2j23 + 1) are the dimensions of the representations labeled by
j12 and j23, respectively.] It follows that the quantum mechanical
probability

represents the probability that a system prepared in a state of
the coupling scheme (8), where j1, j2, j3, j12, j have definite
magnitudes, will be measured to be in a state of the coupling
scheme (9).

The 6j symbol may be written as sums of products of four
Clebsch-Gordan coefficients or their symmetric counterparts,
the Wigner 3j symbols. The relations between 6j and 3j symbols
are given explicitly by (see, e.g., ref 33)

where Φ ) d + e + f + δ + ε + �. Here Latin letters stand
for j-type labels (integer or half-integers non-negative numbers)
while Greek letters denote the associated magnetic quantum
numbers (each varying in integer steps between -j and j, j ∈
{a, b, c, d, e, f}). The sum is over all possible values of R, �,
γ, δ, ε, � with only three summation indices being independent.

On the basis of the above decomposition it can be shown
that the 6j symbol is invariant under any permutation of its
columns or under interchange the upper and lower arguments
in each of any two columns. These algebraic relations involve
3! × 4 ) 24 different 6j with the same value and are referred
to as classical symmetries as opposite to “Regge” symmetries
to be discussed in Appendix A.2.

The 6j symbol is naturally endowed with a geometric
symmetry, the tetrahedral symmetry, as the reproduction of the
XVI century printer’s device suggests (see Introduction). Note
first that each 3j (or Clebsch-Gordan) coefficient vanishes
unless its j-type entries satisfy the triangular condition, namely
|b - c| e a e b + c, etc. This suggests that each of the four
3j’s in (13) can be be associated with either a 3-valent vertex
or a triangle. Accordingly, there are two graphical representation
of the 6j exhibiting its symmetry properties. Here we adopt the
three-dimensional picture introduced in the seminal paper by
Ponzano and Regge,7 rather than Yutsis’ “dual” representation
as a complete graph on four vertices.34 Then the 6j is thought
of as a real solid tetrahedron T with edge lengths l1 ) a + 1/2,l2

) b + 1/2, ..., l6 ) f + 1/2 in p units and triangular faces
associated with the triads (abc), (aef), (dbf), and (dec). [The
1/2-shift is shown to be crucial in the analysis developed in ref
7 for high quantum numbers; the length [j(j + 1)]1/2 of an
angular momentum vector is closer to j + 1/2 in the semiclassical
limit.] This implies in particular that the quantities q1 ) a + b
+ c, q2 ) a + e + f, q3 ) b + d + f, q4 ) c + d + e (sums
of the edge lengths of each face), p1 ) a + b + d + e, p2 ) a
+ c + d + f, p3 ) b + c + e + f are all integer with ph g qk

(h ) 1, 2, 3, k ) 1, 2, 3, 4). The conditions addressed so far
are in general sufficient to guarantee the existence of a
nonvanishing 6j symbol, but they are not enough to ensure the
existence of a geometric tetrahedron T living in Euclidean
3-space with the given edges. More precisely, T exists in this
sense if (and only if, see the discussion in the introduction of
ref 7) its square volume V(T)2 ≡ V2, evaluated by means of the
Cayley-Menger determinant, is positive.

The features of the “quantum tetrahedron” outlined above
represent the foundations of a variety of results, some of which
were discovered in the golden age of quantum mechanics and
have been widely used in old and present applications to atomic
and molecular physics. In this paper we have tried to convey at
least a few applications of this intriguing object in modern
theoretical physics, while in the rest of this appendix we are
going to complete the mathematical background needed in the
previous sections, focusing in particular on semiclassical analysis
and results from special function theory.

A.1. Ponzano-Regge Asymptotic Formula

The Ponzano-Regge asymptotic formula for the 6j symbol
reads7

J1 + J2 + J3 z J (7)

(J1 + J2) ) J12 J12 + J3 ) J (8)

(J2 + J3) ) J23 J1 + J23 ) J (9)

|j1j2j12j3;jm〉 and |j1j2j3j23;jm〉 (10)

|j1j2j12j3;jm〉 )

∑
j23

[(2j12 + 1)(2j23 + 1)]1/2{j1 j2 j12

j3 j j23
}|j1j2j3j23;jm〉 (11)

P ) [(2j12 + 1)(2j23 + 1)]{j1 j2 j12

j3 j j23
}2

(12)

{a b c
d e f } ) ∑ (-)Φ(a b c

R � -γ )(a e f
R ε -� ) ×

(d b f
-δ � � )(d e c

δ -ε γ ) (13)
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{a b d
c f e } ∼ 1

√24πV
exp{i( ∑

r)1

6

lrθr +
π
4 )} (14)

where the limit is taken for all entries .1 (recall that p ) 1)
and lr ≡ jr + 1/2 with {jr} ){a, b, c, d, e, f}. V is the Euclidean
volume of the tetrahedron T and θr is the angle between the
outer normals to the faces which share the edge lr.

From a quantum mechanical viewpoint, the above probability
amplitude has the form of a semiclassical (wave) function since
the factor 1/(24πV)1/2 is slowly varying with respect to the spin
variables while the exponential is a rapidly oscillating dynamical
phase. Such kind of asymptotic behavior complies with Wigner’s
semiclassical estimate for the probability, namely

{a b d
c f e }2

∼ 1/12πV

to be compared with the quantum probability given in (12).
Moreover, according to Feynman path sum interpretation of
quantum mechanics,43 the argument of the exponential in (14)
must represent a classical action, and indeed it can be read as
Σṗq for pairs (p, q) of canonical variables (angular momenta
and conjugate angles). Such an interpretation has been improved
recently by resorting to multidimensional WKB theory for
integrable systems and geometric quantization methods.44

A.2. Racah Hypergeometric Polynomial

The generalized hypergeometric series, denoted by pFq, is
defined on p real or complex numerator parameters a1, a2, ...,
ap, q real or complex denominator parameters b1, b2, ..., bq and
a single variable z by

where (a)n ) a(a + 1)(a + 2)(a + n - 1) denotes a rising
factorial with (a)0 ) 1. If one of the numerator parameters is a
negative integer, as actually happens in the following formula,
the series terminates and the function is a polynomial in z.

The key expression for relating the 6j symbol to hypergeo-
metric functions is given by the well-known Racah sum rule
(see, e.g., ref 2 topic 11 and ref 33 Chapter 9 also for the original
references). The final form of the so-called Racah polynomial
is written in terms of the 4F3 hypergeometric function evaluated
at z ) 1 according to

where

and the parameters �2 and �3 are identified in either way with
the pair remaining in the 3-tuple (a + b + c + d; a + d + e +

f; b + c + e + f) after deleting. The four’s may be identified
with any permutation of (a + b + e; c + d + e; a + c + f; b
+ d + f). Finally, the ∆-factors in front of 4F3 are defined, for
any triad (abc) as

Such a seemly complicated notation is indeed the most
convenient for the purpose of listing further interesting properties
of the Wigner 6j symbol.

• The Racah polynomial is placed at the top of the Askey
hierarchy including all of hypergeometric orthogonal
polynomials of one (discrete or continuous) variable.45 Most
commonly encountered families of special functions in
quantum mechnics are obtained from the Racah polynomial
by applying suitable limiting procedures, as recently
reviewed in ref 46. Such an unified scheme provides in a
straightforward way the algebraic defining relations of the
Wigner 6j symbol viewed as an orthogonal polynomial of
one discrete variable, cf. (16). With standard notation from
the quantum theory of angular momentum, the defining
relations are
the Biedenharn-Elliott identity (R ) a + b + c + d + e
+ f + p + q + r):

the orthogonality relation (δ is the Kronecker delta)

• Given the relation (16), the unexpected new symmetry of
the 6j symbol discovered in 1958 by Regge47 (see also refs
1 and 33) is recognized as a “trivial” set of permutations
on the parameters R and � that leaves 4F3 invariant.
Combining the Regge symmetry and the “classical” ones,
one gets a total number of 144 algebraic symmetries for
the 6j. Note, however, that implications of Regge symmetry
on the geometry of the quantum tetrahedron, taken into
account in ref 48, certainly deserve further investigations
also in view of the relevance of this topic in completely
different contexts, cf. for instance ref 49.

• The Askey hierarchy of orthogonal polynomials can be
extended to a q-hierarchy,45 on the top of which the q-4F3

polynomial stands.
It is worth noting that the deformation parameter q was
originally assumed by physicists to be a real number related
to Planck constant p by q ) ep, and therefore it is
commonly referred to as a “quantum” deformation, while
the “classical”, undeformed Lie group symmetry is recov-
ered at the particular value q ) 1. However, when dealing
with quantum invariants of knots and 3-manifolds formu-
lated in the framework of “unitary” quantum field theory,
as done in sections 2 and 3, q is taken to be a complex
root of unity, the case q ) 1 being considered as the

pFq(a1 · · · ap

; z
b1 · · · bq

) ) ∑
n)0

∞ (a1)n · · · (ap)n

(b1)n · · · (bp)n

zn

n!
(15)

{a b d
c f e } ) ∆(abe) ∆(cde) ∆(acf) ∆(bdf) (-)�1(�1 + 1)! ×

4F3(R1 - �1 R2 - �1 R3 - �1 R4 - �1

; 1
-�1 - 1 �2 - �1 + 1 �3 - �1 + 1 )

(�2 - �1)!(�3 - �1)!(�1 - R1)!(�1 - R2)!(�1 - �3)!(�1 - R4)!
(16)

�1 ) min(a + b + c + d; a + d + e + f; b + c + e + f)

∆(abc) ) [(a + b - b)!(a - b + c)!(-a + b + c)
(a + b + c + 1)! ]1/2

∑
x

(-)R+x(2x + 1){a b x
c d p }{c d x

e f q }{e f x
b a r })

{p q r
e a d }{p q r

f b c }
(17)

∑
x

(2x + 1){a b x
c d p }{c d x

a b q } )
δpq

(2p + 1)
(18)
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“trivial” one. We refer to refs 50 and 51 for accounts on
the theory of q-special functions and q-tensor algebras.
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